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Abstract. We consider a model for 2D electrons in a very strong magnetic field (i.e. projected
onto a single Landau level) and a random potentialV . The computation of the averaged
Green function for this system reduces to calculating the averaged density of states. We have
constructed a computer algebra program which automatically generates a perturbation expansion
in V for these quantities. This is equivalent to computing moments of the density of states.
WhenV is a sum of Gaussians from Poisson distributed impurities, each term in the perturbation
expansion can be evaluated automatically. We have done so up to the 12th order. The resulting
information can be used to reconstruct the density of states to good precision.

1. Introduction

The quantum Hall effect has continued to furnish theoretical physics with challenges and
interesting problems for almost twenty years. It is remarkable that the combination of basic
physics (classical electrostatics and magnetism, and non-relativistic quantum mechanics)
which has been known and researched upon for so long can lead to so many unexpected
and exotic phenomena.

In the work reported on in this paper we have been inspired by the integer quantum
Hall effect [1] to initiate a somewhat prosaic (but we think nevertheless useful) project—
the brute-force high-order perturbation expansion of impurity-averaged quantities in the
quantum Hall system. The problem that we consider is a model of non-interacting electrons
confined to a two-dimensional layer in a very strong perpendicular magnetic field and a
random impurity potentialV . All information about the physical properties of this model
is encoded in its various Green functions. In the absence of electron–electron interactions
it suffices to consider the one-particle Green function, e.g. the solution to an equation like

− ∂
∂t
G(r,ρ; t) = HG(r,ρ; t)

whereH is the one-particle Hamiltonian. Thus,G is a random quantity (being a functional
of V ) for which we can only expect to be able to compute various impurity averages like

K∏
k=1

G(rk,ρk; tk).

In this paper we shall only consider the case ofK = 1. To investigate transport properties
one must also consider the case ofK = 2.

Our perturbation expansion consists of expandingG into a series in powers ofV (which
for our model is equivalent to an expansion in powers of time), and performing the impurity
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average of each term in this series. The result of the averaging process can be represented
by a sum of (Feynman) diagrams. The number of diagrams grows quite rapidly with the
perturbative order; to 12th order it reaches a few hundred thousand (the exact numbers
are listed in table 1—see later). We have written a computer algebra program which
automatically generates all diagrams to a given order.

The use of the generated diagrams is not restricted to the quantum Hall system.
However, the great simplification which occurs for this system (under conditions explained
below) is that each diagram reduces to a low-dimensional Gaussian integral (or the integral of
a Gaussian multiplied by a polynomial), and thus can be evaluated analytically by computer
algebra. The conditions are (i) that the system is projected onto a single Landau level (most
simply the lowest one), and (ii) that all correlatorsV (r1) · · ·V (rk) can be written as sums
of Gaussians (or Gaussians multiplied by polynomials). The latter restriction is fulfilled
if we assumeV to arise from a density of Poisson distributed impurities with a Gaussian
impurity potential. In theδ-function limit, when the range of the Gaussian goes to zero,
this model belongs to a class of systems which was solved exactly for the density of states
by Brézin et al [2] (a simpler system, which corresponds to the additional limit of taking
the impurity density to infinity, was solved earlier by Wegner [3]. These solutions provide
useful checks of our results and methodology.

Given the beginning of a perturbation series, even to high orders, it is not obvious how
one should extract the correct physical information from it, if its expansion parameter fails
to be small. It is not even obvious that computing a few more terms in the perturbation
expansion will be helpful. This is a problem which arises quite often, and for which many
methods of massaging the perturbation expansions have been devised. Our model provides
a non-trivial example of this problem, which can be investigated to rather high orders
of perturbation theory. We have considered the commonest methods of summing infinite
subsets of the perturbation series. The results were not encouraging. This is not surprising,
in view of the fact that such subsets are usually selected more for their property of being
(easily) summable than for their physical importance.

A more fruitful approach to our problem is to utilize the fact that the information
contained in thenth perturbative order is equivalent to thenth moment(s) of a spectral
function. For the averaged Green function this spectral function is actually the density of
states (as function of energy). This is due to the fact that translation invariance forces the
relation

G(x,y; t) = P(x,y)G(t)
whereP is the projection operator onto the given Landau level. The proof of this relation
is given in section 2.

There are, of course, infinitely many spectral functions which reproduce a given finite
set of moments. However, for physical systems the assumptions of a certain degree of
smoothness and simple asymptotic behaviour are usually reasonable. Then, the high-order
behaviour of the moments provides information about the tail of the spectral function, while
their totality pins down its overall behaviour. We have applied this procedure with very
satisfactory results.

The rest of this paper is organized as follows. In section 2 we give a more detailed
description of our model and the method of solution. In section 3 we describe some of the
functions which naturally occur in the graphical expansion, the relations between them, and
the number of graphs contributing to each perturbative order. This information has been
used to check the correctness of our computer algebra programs. In section 4 we present
our calculated moments, for the lowest Landau level, and give some physical interpretation
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of the results. In section 5 we discuss the exact results of Brézin et al and Wegner, and
compare their densities of states with various ways to reconstruct it from our computed
moments. In section 6 we discuss the more general case of a finite-range impurity potential,
still in the lowest Landau level. In section 7 we make a more restricted analysis for some
higher Landau levels.

2. The model and method of solution

We choose units such that the magnetic length,`B =
√
h̄/eB, becomes unity. That is,

we have(2π)−1 states per area in each Landau level. We measure energies relative to the
(unperturbed) energy of the Landau level that we project onto, and choose the energy scale
such that the impurity potential becomes

W(r) = 2

% − 1
exp

( −r2

% − 1

)
(1)

with % > 1. This is normalized to
∫

dr W(r) = 2π . The limit % → 1+ corresponds to a
delta function potential. We assume a densityf/2π of Poisson distributed impurities, such
that the random potential becomes

V (r) =
∑
i

W(r − si ) (2)

where the impurity positions{si} are independently and homogeneously distributed. That
is, there are on averagef impurities per state in a single Landau level. Since we neglect
couplings to other Landau levels, the Hamiltonian is simply equal toV , which we shall
formally view as a perturbation. Thus, the zeroth-order Green function equals the (kernel
of the) projection operator onto theνth Landau level:

G(0)(r,ρ; t) = Pν(r,ρ).
An explicit expression for this projection is

Pν(r,ρ) = 1

2π
exp

[
−1

4
(r − ρ)2+ i

2
(xη − ξy)

]
Lν

(
1

2
(r − ρ)2

)
(3)

where (x, y) and (ξ, η) are the components ofr and ρ respectively, andLν is the νth
Laguerre polynomial. For completeness we present a derivation of this well known result
in appendix A. Depending on the choice of gauge, expression (3) may be multiplied by a
gauge factor exp[i0(r)− i0(ρ)]. SincePν is a projection, it has the reproducing property:∫

dρ P(r1,ρ)P(ρ, r2) = P(r1, r2). (4)

SinceLν(0) = 1, it follows from (3) thatPν(r, r) = (2π)−1, in agreement with the fact
that it must equal the number of states per area.

A series expansion for the fullG can be generated by repeated time integrations:

G(r,ρ; t) =
∞∑
k=0

(−t)k
k!

[
(PνV )kPν

]
(r,ρ). (5)

We now average over the impurity positions{si}. To this end we temporarily assume the
system to be confined to the finite area 2πN with S = fN impurities, and letN → ∞
afterwards. We find

U(r1, . . . , rk) ≡ V (r1) · · ·V (rk) =
∫ ( S∏

i=1

dsi
2πN

) k∏
j=1

S∑
ij=1

W(r1− si1) · · ·W(rk − sik ).

(6)
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First consider the situation in which all of thesij correspond to different impurities
(as is likely to be the case when all the positionsrj are far apart). Then all integrations
factorize, each giving a factor ofN−1. Summing over all possible ways to pickk different
impurities from a total ofS, we get the contribution

N−k
(
S

k

)
= f

(
f − 1

N

)
· · ·
(
f − k − 1

N

)
≡ f (k)→ f k asN →∞ (7)

to U(r1, . . . , rk). The other extreme is to assume that all of thesij correspond to same
impurity (as is likely to be the case when the density of impurities is very low, and all of
the ris are close together). Integrating over the impurity position we get a contribution

Uk(r1, . . . , rk) ≡ f

k

(
2

% − 1

)k−1

exp

(
−

k∑
i,j=1

(ri − rj )2
2k(% − 1)

)
(8)

to U(r1, . . . , rk). The full average must take into account all possible variations between
the above two extremes. The complete expression is (asN →∞)

U(r1, . . . , rk) =
∑
Q
Ua1(r., . . . , r.) · · ·Uaj (r., . . . , r.) (9)

where the sum runs over all partitionsQ of the set{r1, . . . , rk} into j = 1, . . . , k non-
empty subsets of sizesa1, . . . , aj , and theUas are symmetric functions of the coordinates
in each subset. There are

∑k
j=1S

(j)

k terms in the sum, where theS(j)k s are the Stirling
numbers of the second kind [4]. Each term corresponds to a Feynman diagram in the
perturbation expansion. In our computer algebra program eachkth-order Feynman diagram
is represented by a partition of the set{1, . . . , k}. By generating all partitions of this set
we obtain allkth-order diagrams. They are all topologically distinct, and all occur with
combinatorial factor unity.

+ + + +

+ + +

+

(1)(0) (2a) (2b)

(3a) (3b) (3c)

(3d) (3e)

Figure 1. The diagrams for the averaged Green function, up to third order in the impurity
potential. Open dots represent fixed coordinates, filled dots represent coordinates to be integrated
over. A dashed line (with an implicit direction from left to right) represents the projectionPν .
A full line, or a filled region, represents various correlators of the random potentialV .

The nine diagrams for the zeroth to third order of expansion are shown in figure 1,
and the 15 diagrams of fourth order are shown in figure 2. Here open dots represent fixed
coordinates, and filled dots represent coordinates to be integrated over. A dashed line
(with an implicit direction from left to right) represents the projectionPν . The symmetric,
translation-invariant functionsUq(r1, . . . , rq) are represented by filled regions connected
to q filled dots. Forq = 1 they reduce to isolated filled dots, to each of which there is
associated a factorf .
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(4a) (4b) (4c)

(4d) (4e) (4f)

(4g)

(4j)

(4m)

(4h)

(4k)

(4n)

(4i)

(4l)

(4o)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 2. The fourth-order diagrams for the averaged Green function.

According to (8) and (9), a partitionQ into j non-empty subsets gives a contribution
which is proportional tof j . This is fully correct only in the limitN →∞. A finite-size
correction is obtained by making the replacementf j → f (j); cf. equation (7).

The evaluation of the individual diagrams amounts to computing integrals like∫ k∏
i=1

dρi Pν(r,ρ1)Pν(ρ1,ρ2) · · ·Pν(ρk,ρ)Ua1(ρ., . . . ,ρ.) · · ·Uaj (ρ., . . . ,ρ.).

For the lowest Landau level,ν = 0, this is just a sum of Gaussian integrals. In the higher
levels it becomes a sum of Gaussians multiplied by polynomials.

Since the averaging process restores translation invariance, each diagram must be a
translation-invariant (with respect to the magnetic translation group) expression constructed
only out of states in theνth Landau level. This forces it to be proportional toPν(r,ρ). To
show this more explicitly, we start with the most general expansion of an averaged diagram:

GQ(r,ρ) =
∫

dp dq C(p, q)ψp(r)ψq(ρ)
∗

where{ψp} form an orthonormal basis for theνth Landau level.
In the Landau gauge,Ay = 0, we may choose this basis such that the magnetic

translation group acts as

t (ax̂): ψk → eika′ψk t (bŷ): ψk → ψk+b′

wherea′ is proportional toa, andb′ is proportional tob. The requirement that[
t (bŷ)GQ

]
(r,ρ) = GQ(r,ρ)

implies thatC(p, q) = C(p − q), and the requirement that[
t (ax̂)GQ

]
(r,ρ) = GQ(r,ρ)

implies thatC(p − q) = C0δ(p − q), with C0 a constant. Thus,GQ(r,ρ) ∝ Pν(r,ρ). A
graphical representation of this relation is illustrated in figure 3 (except that the split-off
‘vacuum diagram’ should not be counted with its usual combinatorial factor). As a control
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Figure 3. Due to translation invariance, every diagram contributing to the averaged Green
function becomes proportional to the projection onto the given Landau level.

of our computer algebra program, we have verified this relation explicitly for a large number
of cases. Using it reduces the evaluation ofkth-order diagrams to calculating determinants
of k × k matrices (when employing complex coordinates in the lowest Landau level).

Comparing the expansion

G(r,ρ; t) = Pν(r,ρ)
∞∑
k=0

(−t)k
k!

Gk ≡ Pν(r,ρ)G(t)

with the general expansion in energy eigenfunctions

G(r,ρ; t) =
∑
α

ψα(r)ψ
∗
α(ρ) exp(−tEα)

we obtain after settingρ = r and integrating

NG(t) =
∑
α

exp(−tEα) ≡ N
∫

dE D(E) exp(−tE) (10)

whereD(E) is the averaged density of states (normalized to
∫

dE D(E) = 1). That is,
G(t) is simply the Laplace transform ofD(E), and the information obtained from thekth
perturbative order is exactly thekth moment of the averaged density of states,

Gk =
∫

dE D(E)Ek. (11)

3. Counting and resumming graphs

We define

G̃(u) ≡ −
∫ ∞

0
dt et/uG(t) =

∫
dE D(E)

u

1− Eu =
∞∑
k=0

Gku
k+1 (12)

where the series should be interpreted in an asymptotic sense. The integral converges
for u < 0, andG̃(u) can be extended by analytic continuation. As noted, the graphical
expansion illustrated by figures 1 and 2 amounts to expandingG̃ into a formal power series
in u. There are various ways of resumming graphical expansions of this type. The simplest



Averaged Green function and density of states 10807

and most useful one is to sum up sequences ofPνs connected by isolated dots (i.e. factors
of U1). This amounts to making the replacement

Pν → Pν 1

1− f u
and summing over graphs containing no isolated dots. The latter sum defines a function
Ĝ(u), related toG̃ by

G̃(u) = Ĝ
(

u

1− f u
)
. (13)

Thekth-order graphs for̂G(u) ∼∑∞k=0 Ĝku
k+1 are in 1–1 correspondence with the partitions

of the set {1, . . . , k} into subsets of sizesaj > 2. The number of such partitions is
significantly smaller than the total number. For instance, inspection of figures 1 and 2
reveals that only the graphs (0), (2b), (3e), and (4l)–(4o) contribute toĜ up to the fourth
order. The total numbers of graphs which contribute toG̃(u) (namelyGk) andĜ(u) (namely
Ĝk) are listed in table 1.

Table 1. The numbers of graphs contributing to various functions.Gk : the total number of
graphs contributing to the Green function.̂Gk : the number of graphs not containing isolated
dots. 6̂k : the number of one-particle irreducible graphs not containing isolated dots.Sk : the
number of skeleton graphs.Ck : the number of irreducible terms in the answer.

k Gk Ĝk 6̂k Sk Ck

1 1 0 0 1 1
2 2 1 1 1 1
3 5 1 1 1 1
4 15 4 3 2 2
5 52 11 9 6 2
6 203 41 33 21 7
7 877 162 135 85 10
8 4140 715 609 385 36
9 21 147 3425 2985 1907 85

10 115 975 17 722 15 747 10 205 319
11 678 570 98 253 88 761 58 455 1113
12 4213 597 580 317 531 561 355 884 5088
13 27 644 437 3633 280 3366 567 2290 536
14 190 899 322 24 011 157 22 462 017 15 518 391
15 1382 958 545 166 888 165 157 363 329 110 283 179
16 10 480 142 147 1216 070 389 1154 257 683 819 675 482

Another standard resummation method is that of defining6(u) through the relation

G̃(u) = u

1−6(u) (14)

where only one-particle irreducible graphs contribute to6. We may combine this with the
resummation of isolated dots above, to obtain

6(u) = f u+ (1− f u)6̂
(

u

1− f u
)
. (15)

Here6̂ is the sum of all one-particle irreducible graphs which do not contain isolated dots.
The numbers of such graphs are also listed in table 1. As can be seen, there is some



10808 A Kristoffersen and K Olaussen

reduction in the number of graphs to be calculated, but not a very significant one. Of the
graphs in figures 1 and 2, the only additional saving is the elimination of graph (4l).

A further reduction in the number of contributing graphs is obtained by first summing
up the skeleton diagramsS(u). This is the set of graphs such that their corresponding
‘vacuum diagrams’ (cf. figure 3) are one-particle irreducible. This function is related to6

by

6(u) = [1−6(u)] S
(

u

1−6(u)
)
. (16)

(The functionŜ(u) = S(u)−f u is related to6̂(u) in the same way.) The numbers of graphs
contributing toS are also listed in table 1. ExpandingS to second order in its argument,
and solving the resulting second-degree algebraic equation for6 (or, equivalently,G̃),
constitutes to the so-called self consistent Born approximation (SCBA). Of the graphs in
figures 1 and 2, the only additional saving when restricting to skeleton diagrams is the
elimination of graph (4m).

One way to employ the resummation methods above is to generate a smaller set of
diagrams (e.g. for̂G(u), 6̂(u), or S(u)) to a given order, and then find the full perturbation
expansion to the same order by use of the algebraic relations above. However, the benefits
of going beyondĜ(u) are marginal, since the reduction in the number of graphs is rather
small while more computer time is needed to classify graphs. We have in our computation
evaluated all graphs contributing tôG(u). As a check on the computer algebra we have in
addition summed the subsets of these graphs contributing to6̂(u) andS(u), and verified
that they reproduce the same end result forG̃(u). The simplest check of the program is to
verify that it actually generates the numbers of graphs listed in table 1, since these numbers
are computed in an entirely independent way (starting from the Stirling numbers).

Another way to use the resummation methods above is to combine a finite perturbation
expansion from6̂(u) or S(u) with the exact algebraic equations, thereby generating some
approximate, but infinite, series for̃G(u). Considering the numbers in table 1, we note
that the resummation of isolated dots captures a large percentage of the total number of
graphs. However, the physical effect of this resummation is rather uninteresting—it merely
corresponds to an overall shift in the energies. Of the remaining graphs we note that the
majority of them are complicated ones (i.e. skeleton graphs) which cannot be generated
by resumming lower-order terms. Thus, the resummations above underestimate thekth
perturbative order by increasingly large amounts ask increases. In the absence of any
physical reasons for selecting a particular class of diagrams, we believe that it is much more
sensible to extrapolate the perturbation series in a statistical sense, by considering how the
total number of graphs, and their average value, varies with the perturbative orderk.

4. Calculated moments

We have calculated the perturbation series up to the 12th perturbative order, for general
values of impurity densityf and potential range%. Each graph contributes a rational
function in %, multiplied by some power off . The general answer rapidly becomes too
complicated to present here. We present the results in terms of the momentsGk of the
density of states. The general expressions for the first five moments are listed in table 2.
The full result for the case ofδ-function impurities,% = 1, is listed in table 3. We list
results for some additional values of% (in floating-point form) in appendix B.

It is an amusing exercise to search for general patterns in table 2 and table 3. The
coefficients of the highest powers off are straightforward to find, since the series forĜ(u)
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Table 2. The first five energy moments for general%, in the lowest Landau level.

k Gk

1 f

2
1

%
f + f 2

3
4

3%2 + 1
f + 3

%
f 2 + f 3

4
2

%(%2 + 1)
f + 25%4 + 25%2 + 2

%2(%2 + 1)(3%2 + 1)
f 2 + 6

%
f 3 + f 4

5
16

5%4 + 10%2 + 1
f + 210%4 + 420%2 + 170

%(3%2 + 1)(3%2 + 5)(%2 + 1)
f 2 + 85%4 + 85%2 + 10

%2(%2 + 1)(3%2 + 1)
f 3 + 10

%
f 4 + f 5

.

.

.

k
2k

(% + 1)k − (% − 1)k
f + · · · +

(
k

3

)
(9k − 11)(%4 + %2)+ (2k − 6)

4%2(%2 + 1)(3%2 + 1)
f k−2 + k(k − 1)

2%
f k−1 + f k

Table 3. The first twelve energy moments forδ-function impurities (% = 1).

k Gk

1 f

2 f + f 2

3 f + 3f 2 + f 3

4 f + 13
2 f

2 + 6f 3 + f 4

5 f + 25
2 f

2 + 45
2 f

3 + 10f 4 + f 5

6 f + 137
6 f

2 + 277
4 f

3 + 115
2 f

4 + 15f 5 + f 6

7 f + 245
6 f

2 + 2317
12 f

3 + 1029
4 f 4 + 245

2 f
5 + 21f 6 + f 7

8 f + 871
12 f

2 + 3067
6 f 3 + 24 131

24 f 4 + 749f 5 + 231f 6 + 28f 7 + f 8

9 f + 517
4 f

2 + 47 443
36 f 3 + 29 091

8 f 4 + 31 121
8 f 5 + 1848f 6 + 399f 7 + 36f 8 + f 9

10 f + 4629
20 f

2 + 241 715
72 f 3 + 452 455

36 f 4 + 292 901
16 f 5 + 98 261

8 f 6 + 8085
2 f 7 + 645f 8

+45f 9 + f 10

11 f + 8349
20 f

2 + 3068 197
360 f 3 + 3047 209

72 f 4 + 11 665 093
144 f 5 + 1163 173

16 f 6 + 267 377
8 f 7

+ 16 137
2 f 8 + 990f 9 + 55f 10+ f 11

12 f + 45 517
60 f 2 + 5201 203

240 f 3 + 303 556 067
2160 f 4 + 16 554 385

48 f 5 + 114 943 133
288 f 6

+ 1940 433
8 f 7 + 649 231

8 f 8 + 14 982f 9 + 2915
2 f 10+ 66f 11+ f 12

up to the 2j th perturbative order determines all of the terms proportional tof k, f k−1, . . . ,
f k−j in the kth perturbative order. The lowest powers off are of more physical interest.
Consider first the case ofδ-function impurities. The general pattern of thef 2-terms looks
a bit complicated, but it is easy to verify that it fits the formula

Gk = f + f 2
bk/2c∑
p=1

1

p

(
k

2p

)
+O(f 3). (17)

These moments are reproduced to orderf 2 by the density of states

D(E) = (1− f )δ(E)+ 1
2f

2θ(E)θ(2− E)|E − 1|f−1. (18)
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The physics behind this expression is as follows.

(i) ConsiderS = fN < N arbitrarily placed impurities in a single Landau level, for
which the Hilbert space of wave functions isN -dimensional. The condition that a wave
function vanishes at all impurities imposesS constraints, for which the solution space is at
least(N −S)-dimensional. These solutions will have exactly zero energy, which is also the
lowest possible energy. Hence, there must for allf < 1 be aδ-function contribution to the
density of states, of strength 1− f .

(ii) At very low f the impurities are very far apart. Each of them will bind one state of
energyE = 1. Hence, they will contribute a termf δ(E − 1) to the density of states. This
is sufficient to reproduce all moments to orderf . To orderf 2 we must consider the mixing
between states at different impurities (to this order, only mixing between two impurities).
The energies for two impurities at distancer areE± = 1± e−r

2/4. Integrating over the
distribution of relative distances we get a contribution to the density of states of

1D(E) ∝
∫

dr
[
δ(E − 1− e−r

2/4)+ δ(E − 1+ e−r
2/4)

]
∝
∫ 1

0

dx

x
[δ(E − 1− x)+ δ(E − 1+ x)]

∝ θ(E)θ(2− E)|E − 1|−1.

This distribution is not normalizable, but has finite moments〈(E − 1)k〉. The lack of
normalization is due to the fact that additional impurities must be taken into account at
very large separationsr (of orderf −1/2). A simple way to model this is by introducing a
distribution dp(r) = e−kf r

2
kf dr2 for the relative pair distance (the total density of pairs

being 1
2f ). The requirement that all moments be reproduced to orderf 2 fixes k = 1

4. This
in turn leads to (18).

(iii) If one repeats the previous argument with the finite-size correction,f 2 → f (2) =
f (f − N−1), one is led to the conclusion that the exponent in (18) should also undergo a
finite-size correction,

|E − 1|f−1→ |E − 1|f−1−1/N .

It is also easy to understand the physical origin of the low-f behaviour of the general
moments,

Gk = 2k

(% + 1)k − (% − 1)k
f +O(f 2). (19)

This is related to the behaviour of electrons near the single-impurity potential (1). With
the impurity at the origin we find eigenstates (in the symmetric gauge, and cylindrical
coordinates)

ψ`(r) = (2π2``!)−1/2r`e−i`ϕe−r
2/4

and corresponding energies (cf. appendix A)

E` =
(

2

% + 1

)(
% − 1

% + 1

)`
` = 0, 1, 2, . . .. (20)

With a small fractionf of such impurities the contribution to the density of states becomes

D(E) = f
∑
`

δ(E − E`). (21)
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The sum must be cut off when the extensionr` of the wave function becomes of order
f −1/2, i.e. for ` of orderf −1. This is important for obtaining a normalizedD, but can be
ignored when calculating its moments. Thus we get to orderf

Gk = f
∞∑
`=0

Ek` = f
(

2

% + 1

)k [
1−

(
% − 1

% + 1

)k]−1

.

4.1. The cumulant expansion

The information in table 2 and table 3 can be compressed somewhat by rewriting it in terms
of cumulants. The moments〈Ek〉 are related to the Laplace transform of the density of
states,

G(t) ≡
∫ ∞

0
dE D(E)e−tE =

∞∑
k=0

(−t)k
k!

Gk. (22)

By rewriting this as

G(t) = exp(χ(t)) = exp

( ∞∑
k=1

tkχk

)
(23)

we obtain the cumulant expansion. No information is lost when going between the set of
cumulants{χk|k = 1, . . . , m} and the set of moments{Gk|k = 1, . . . , m}.

Table 4. The first five cumulants for general%, in the lowest Landau level.

k (−1)kk!χk

1 f

2
1

%
f

3
4

3%2 + 1
f

4
2

%(%2 + 1)
f − 1

(%2 + 1)%2
f 2

5
16

5%4 + 10%2 + 1
f − 80

(3%2 + 5)%(3%2 + 1)
f 2

.

.

.

k
2k

(% + 1)k − (% − 1)k
f + · · ·

We show the five first cumulants for general values off and% in table 4, and the first
twelve cumulants forδ-function potentials (% = 1) in table 5. Note that a factor(−1)k/k!
has been split off in both tables. The cumulant expansion may also be viewed as yet another
way of resumming a perturbation expansion. We return to this below.

5. Comparison with the exact results of Bŕezin et al and Wegner

For the case ofδ-function impurities,% = 1, exact formulas for the density of states have
been found by Bŕezin et al [2], and by Wegner [3]. The results obtained by Wegner
correspond to taking the additional limit off → ∞. Their expressions for the density
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Table 5. The first twelve cumulants forδ-function impurities, in the lowest Landau level.

k (−1)kk!χk

1 f

2 f

3 f

4 f − 1
2f

2

5 f − 5
2f

2

6 f − 49
6 f

2 + 7
4f

3

7 f − 133
6 f

2 + 77
4 f

3

8 f − 653
12 f

2 + 757
6 f

3 − 109
8 f

4

9 f − 503
4 f

2 + 11 603
18 f 3 − 2085

8 f 4

10 f − 5591
20 f

2 + 204 725
72 f 3 − 17 065

6 f 4 + 2971
16 f

5

11 f − 12 111
20 f 2 + 820 787

72 f 3 − 841 489
36 f 4 + 87 197

16 f 5

12 f − 77 303
60 f 2 + 10 270 399

240 f 3 − 69 677 951
432 f 4 + 87 197

16 f 5 − 124 513
32 f 6

of states are highly non-trivial, and they provide very useful checks on our results and
methodology.

5.1. The result of Br´ezin et al

The results found in reference [2] specialize for our model (with% = 1) to the integral

DB(E) = 1

π
Im

∂

∂E
ln
∫ ∞

0
dt exp[iEt − f I (t)] (24a)

where

I (t) =
∫ t

0

dβ

β
(1− e−iβ) = it + 1

4
t2− i

18
t4− · · · . (24b)

It is a rather challenging task to evaluate this expression numerically. As was pointed out in
[2], DB(E) has a lot of interesting structure, in particular for a low density of impuritiesf .

(i) For f < 1 there is aδ-function contribution toDB(E),

DB(E) = (1− f )δ(E)+ · · · . (25)

As explained before (cf. the discussion around equation (18)), this is due to the fact that
we may arrange for a fraction 1− f of all wavefunctions to vanish at all impurities. This
phenomenon was already pointed out by Ando [5].

(ii) As E→ 0+ one finds the behaviour

DB(E) ∼


E−f 0< f < 1

E−1/ log2(E) f = 1

Ef−2 1< f .

(26)

The increasingly singular behaviour asf increases from 0 to 1 is due to zero-energy states
moving out into the low-E region. As regards the largef -dependence, a crude qualitative
understanding is obtained by considering an arbitrarily placed, maximally localized state,

|ψ(r)|2 = Ne−(r−r0)
2/2.
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Figure 4. A 3D plot of the density of states found by Brézin et al, as functions of the energy
E and impurity densityf . In addition to the plotted density there is a contribution(1−f )δ(E)
whenf < 1.
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Figure 5. The density of states for (a)f = 0.2, (b) f = 0.5, and (c)f = 0.8. Due to a
δ-function contribution atE = 0 the curves are normalized tof instead of 1.

The probability Prob(E < E0) that this state has an energy less thatE0 is equal to the
probability that the distancer from r0 to its nearest impurity satisfiesN exp(−r2/2) < E0.
Now,

Prob(exp(−r2/2) < E0/2πN ) = (E0/2πN )f

which predictsD(E) ∼ Ef−1. This is an underestimate (because our assumption that the
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state was maximally localized, and arbitrarily placed, cannot be expected to hold), but the
dependence onf turns out to be correct.

(iii) As E→ 1 one finds a diverging density of states

DB(E) ∼ |E − 1|f−1 for 0< f < 1 (27)

and this singularity continues as a cusp singularity for 1< f < 2. As discussed before
(cf. equation (18)), this singularity originates in states localized on top of single impurities.
The interaction with nearby impurities leads to a level broadening aroundE = 1.

(iv) As E→ 2 there is a cusp singularity,

d

dE
DB(E) ∼ |E − 2|f−1 for 0< f < 1. (28)

This singularity is due to the fact that a state must interact with at least three impurities
to have an energyE > 2, while two impurities are sufficient forE < 2. By similar
reasoning one can also understand why there are (increasingly weak) singularities inDB(E)

at E = 3, 4, . . ..
(v) DB(E) is a fairly smooth function forf > 2.

Plots for the integrated density of states,
∫ E

0 dE′ DB(E
′), were given in [2] and [6]. The

plots ofDB(E) itself look more interesting; we give examples in figures 4 and 5. We shall
return to a reconstruction ofDB(E) from our calculated moments, but first we consider the
limiting case off →∞.

5.2. The limit of high impurity density, and the result of Wegner

Consider now equation (24b) for very largef . The main contribution to the integral will
come from smallt , and hence we may use the approximation

I (t) ≈ it + 1
4t

2. (29)

This leads to the expression√
fDB(E) ≈ DW(ε) ≡ 1

π
Im

∂

∂ε
ln(1+ erf(iε))

= 2

π3/2

exp(ε2)

1− erf2(iε)
= 2

π3/2

exp(ε2)

1+ irf 2(ε)
(30)

whereε = (E − f )/√f , and irf(ε) ≡ −i erf(iε) is a real function of a real argument. This
is equivalent to the result given by Wegner [3].

The Fourier transform ofDW(ε) has the series expansion

D̃W(ω) =
∫ ∞
−∞

dε e−iωεDW(ε)

= 1− 1

2!
〈ε2〉ω2+ 1

4!
〈ε4〉ω4− 1

6!
〈ε6〉ω6+ 1

8!
〈ε8〉ω8− · · · (31)

with 〈εn〉 = ∫∞−∞ dε DW(ε)ε
n. One may verify (numerically) that

〈ε2〉 = 1 〈ε4〉 = 5
2 〈ε6〉 = 37

4

〈ε8〉 = 353

8
〈ε10〉 = 4081

16
〈ε12〉 = 55 205

32
.

(32)

All odd moments vanish becauseDW(ε) is an even function ofε.
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Now turn to the problem of determiningD(E) from e.g. the cumulants in table 4.
Formally this may be done by inverting the Laplace transform given by (22) and (23). With
t = iu this becomes

D(E) = 1

2π

∫ ∞
−∞

du ei(E−f )u exp
∞∑
k=2

(iu)kχk. (33)

To investigate the large-f limit we introduceε = (E − f )/√f , ω = u√f , and keep only
terms which remain whenf →∞. Thus, in this limit,√

fD(E) ≈ 1

2π

∫ ∞
−∞

dω eiεωD̃(ω) (34)

where we find from table 4

D̃(ω) = exp

(
−1

2
ω2− 1

2× 4!
ω4− 7

4× 6!
ω6− 109

8× 8!
ω8

− 2971

16× 10!
ω10− 124 513

32× 12!
ω12− · · ·

)
. (35)

One may verify thatD̃W(ω) = D̃(ω) to the order inω that we have computed.

0.36

0.37

0.38

0 0.1 0.2 0.3

D
n

(0
)

1=n

Figure 6. The approximantsDn(0) as functions ofn−1, together with a fitting function. It is
clear that the approximants converge to a value which is different from the (indicated) exact
result,DW(0) = 0.359 17. . ..

5.3. From the cumulant expansion to the density of states

We now construct approximantsDn(ε) to D(ε), using equation (33) with the cumulants
χ2, . . . , χn included in the sums. The result is surprising and instructive. To investigate the
convergence we evaluate the densities atε = 0 for increasingn. We find

Dn(0) = (0.3788, 0.3744, 0.3721, 0.3710, 0.3703) for n = (4, 6, 8, 10, 12).

This sequence converges nicely withn (see figure 6), fitting the formula

Dn(0) ≈ 0.3675+ 0.024 56n−1+ 0.097 45n−2+ · · · .
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Figure 7. A comparison of the approximantsD10(ε) and D12(ε) (dashed lines) with the
exact resultDW(ε) (fully drawn line). Since all of the curves are symmetric with respect
to ε → −ε, only positiveε is plotted. D10 andD12 are almost indistinguishable, indicating
good convergence. However, the approximants have converged to a result which is different
from the exact one.

However, when this is extrapolated ton = ∞ we obtainD∞(0) ≈ 0.3675, which is about
2.3% higher than the exact result,

DW(0) = 2/π3/2 = 0.359 17. . ..

The situation is further illustrated in figure 7, where we compare the functionsD10(ε),
D12(ε), andDW(ε). The curves forD10(ε) andD12(ε) are almost indistinguishable. This
indicates that the sequence of approximants has converged. However, the limit function
turns out to benegativefor certain ranges ofε. Thus, even without knowledge of the exact
result we could have concluded that something was wrong.

The origin of the problem can be understood by investigating the behaviour ofD̃W(ω).
This is plotted in figure 8, together with the approximantsD̃4(ω), D̃8(ω), andD̃12(ω). We
observe thatD̃W(ω) becomes negative for some|ω| > ω0 ≈ 2.3. Since all of theχks are
real, the cumulant expansion can never reproduce such a behaviour. In fact, all of the terms
in the exponent in equation (35) seem to have the same (negative) sign. Thus, we expect
the series in the exponent to converge to logD̃W(ω) for |ω| < ω0, and diverge to−∞ for
|ω| > ω0. Thus, our approximants̃Dn(ω) will converge to the (wrong) limit

D̃∞(ω) =
{
D̃W(ω) for |ω| < ω0

0 for |ω| > ω0.
(36)

The curves in figure 8 confirm this behaviour. The lessons of this section are that (i) arbitrary
resummations may lead to misleading results, and (ii) even if a sequence of approximations
converges, it may converge towards the wrong result.

5.4. From the moment expansion to the density of states

In the previous section we realized that the cumulant expansion forD̃W(ω) has a finite
radius of convergence,ω0 ≈ 2.3. Here we shall first show that the moment expansion
for DW(ω), cf. equation (31), has an infinite radius of convergence. To this end we must
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Figure 8. Fourier transforms of density of states. The exact resultD̃W(ω) (fully drawn line)
is compared with the approximants̃D4(ω), D̃8(ω), andD̃12(ω) constructed from the cumulant
expansion. The exact function becomes negative in some regions, a property which cannot be
reproduced by the approximants.

evaluate〈εn〉 asn→∞. This quantity will receive its main contribution from the region
of large |ε|, where we may make the approximatioñDW(ε) ≈ 2π−1/2ε2 exp(−ε2). An
asymptotic evaluation of the integral

∫∞
−∞ dε εn+2e−ε

2
then reveals that it receives its main

contribution from|ε| ≈ √1+ n/2 (confirming the approximation), and that

〈εn〉 ∼ 2√
π
0

(
n+ 3

2

)
asn→∞.

It follows that the seriesD̃W(ω) =
∑∞

n=0(−ω2)n〈ε2n〉/2n! converges for allω. Clearly, a
term-by-term integration of this series will not lead to a sensible density of states. However,
we may extract a convergence factor e−aω2/2, and series expand the quantity eaω2/2D̃W(ω),
which also has an infinite radius of convergence. With (the somewhat natural choice of)
a = 1 this method gives better results than the cumulant expansion, but the convergence
with n is unimpressive. (Witha priori knowledge of the answer it is in fact possible to
choose the parametera such that an excellent reconstruction of the density of states is
obtained. However, we have not found a good objective criterion for choosinga, which
would work in more general circumstances.)

5.5. The known moments as constraints on the density of states

Given just a finite set of moments,〈Ek〉 for k = 0, . . . , n, any non-negative functionD(E)
which reproduces them is in principle a possible solution for the corresponding density of
states. In practice,D(E) may be expected to have some simple asymptotic behaviour for
largeE. Since〈Ek〉 for largek is mainly determined byD(E) for largeE, we may use the
asymptotics of〈Ek〉 to estimate this tail ofD(E). Further, for the models at hand, we know
that D(E) = 0 for E < 0, and we may have some independent information about how
D(E) behaves at smallE. With the behaviour ofD(E) constrained from both sides, one
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Figure 9. A comparison of the exact density of states,DB(E) (fully drawn lines), and the
densityD(E) reconstructed from the first twelve moments (dashed lines) for (a)f = 1.99,
(b) f = 2.5, (c) f = 3.0, (d) f = 3.5, (e)f = 4.0, (f ) f = 4.5, and (g)f = 5.0.

expects it to be well determined by its lowest moments—provided that it is a reasonably
smooth function.

This strategy gives a satisfactory method for reconstructing the density of states. We
find that the asymptotics of our calculated moments fits well to the behaviour

〈Ek〉
〈Ek−1〉 ∼ αk

1/2+ β +O(k−1/2).

Such a behaviour is reproduced by a density of states which behaves like

D(E) ∼ Ec exp(−aE2+ bE) asE→∞.

We have the connectionsα = (2a)−1/2 andβ = b(2a)−1. The indexc does not enter to the
order we consider here. With the coefficientsa andb determined, we write the density of
states in the form

D(E) = Ef−2 exp(−aE2+ bE)Pn(E) (37)

wherePn is an nth-order polynomial. We determine itsn + 1 coefficients such that all
the moments〈E0〉, . . . , 〈En〉 are reproduced. This construction leads to aD(E) which
compares favourably with the correspondingDB(E), at least whenf is somewhat larger
than 2; cf. figure 9.

Since the difference between the exact and the reconstructed curves is mostly invisible
in figure 9, we show some examples of this difference in figure 10. The accuracy is
seen to improve with increasingf , most probably because the function that we try to
reconstruct becomes smoother (thus this trend may not continue to arbitrarily highf ). In
this reconstruction we have built in the known low-E behaviour,D(E) ∼ Ef−2. We have
noted that the overall reconstruction is fairly insensitive to shifting the exponent away from
f − 2. Choosing the correct exponent may give somewhat better convergence withn.

6. The density of states for general%

The method used in the previous subsection can be used equally well to reconstruct the
density of states for% > 1. The main difference is that we have noa priori knowledge
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Figure 10. The accuracy of the reconstructed density. We plot the quantity(D(E) −
DB(E))/D

(max)
B for f = 3 (fully drawn line) andf = 4 (dashed line), whereD(max)

B is
the maximal value of the functionDB(E).
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Figure 11. The density of states constructed forf = 4 and (a)% = 1.0, (b) % = 2.5, and
(c) % = 5.0.

of the low-E behaviour ofD(E). However, in the previous section we gave a heuristic
probability argument for thef -dependence of the exponent. This argument may be repeated
for a potential of finite range. It suggests that one should make the replacement

f → f̄ = 1
2(1+ %)f (38)

in the exponent when% > 1. Thus, we have imposed the requirement thatD(E) ∼ Ef̄−2

asE→ 0+. The resulting density of states is shown in figure 11 for a set of%-values. We
no longer have exact results to compare against, but comparison with numerical simulations
shows excellent agreement. We believe that the difference from the exact curves would not
be visible in the plots.

As % increases withf fixed, the distribution approaches a Gaussian of width
√
f/%,

centred aroundE = f :

D(E) ≈ (2πf/%)−1/2 exp

(
−1

2

(E − f )2
f/%

)
. (39)
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In terms of the variableε ≡ (E − f )√%/f , the first high-% correction to this distribution
is determined by the third moment

〈ε3〉 ≈ 4
3(%f )

−1/2. (40)

In general, thekth-order correction (as e.g. defined by thekth cumulant inε) vanishes like
%(2−k)/2 as%→∞.

7. Higher Landau levels

Calculation of averaged Green functions in the higher Landau levels proceeds as in
the lowest one. The changes are that we measure energy relative to the band centre,
E = (ν+1/2), and use the appropriate expression for the projection operator, i.e.P → Pν ,
whereν is the Landau level index. The (integration kernel of the) projection operator for
arbitrary Landau level is given in appendix A. The perturbation expansion for the averaged
Green function continues to be equivalent to computing the moments of the energy density
of states. Since we shall only perform a low-order calculation ‘by hand’ we may as well
calculate the moments directly. (The main advantage of working with the Green function
instead of directly with the moments is that we do not have to worry about combinatorial
factors. This reduces the time that it takes to code, debug, and run computer algebra
routines.)

hEi:

hE2i:

hE3i:

hE3i21 hE3i3

hE2i11 hE2i2

hEi1

hE3i111

Figure 12. Graphs constituting the first three energy moments〈E〉, 〈E2〉, and〈E3〉. Note that
the statistical weight is a factork! higher than the usual combinatorial factor, wherek is the
order of the moment considered.
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Figure 13. The rescaled, effective measure of the impurity width,%νe, plotted as a function
of %, for the lowest four Landau levels, forν = 0, 1, 2, 3. The curve is shifted upwards for
increasingν.

7.1. Evaluation of the lowest three moments

The diagrams for the first three energy moments are shown in figure 12.
We have

〈E〉1 = f 〈E2〉11 = f 2 〈E3〉111= f 3 〈E3〉21 = 3f 〈E2〉2 (41)

which reduces the problem to evaluating〈E2〉2 and 〈E3〉3. These quantities depend on the
Landau level index, which we shall indicate in our notation below. The evaluation of〈E2〉2
reduces to computing

〈E2〉(ν)2 =
f

%

∫ ∞
−∞

du

2π
L2
ν

(
1

2

(
1− 1

%

)
u2

)
exp

(
−1

2
u2

)
whereLν is theνth Laguerre polynomial. Since this is a Gaussian times a polynomial, it
is simple to evaluate for the first fewν. We find the expressions given in table 6.

Table 6. Expressions computed for〈E2〉2.

ν 〈E2〉(ν)2

0
1

%
f

1
(% − 1)2 + 1

%3
f

2
(% − 1)4 + 4(% − 1)2 + 1

%5
f

3
(% − 1)6 + 9(% − 1)4 + 9(% − 1)2 + 1

%7
f

This fits with a general expression

〈E2〉(ν)2 = f %−(2ν+1)
ν∑
k=0

[(
ν

k

)
(% − 1)k

]2

≡ f

%
(ν)
e

(42)
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where%(ν)e is a rescaled, effective form of%, allowing us to write the second-order moment
for arbitraryν in the same form as the second-order moment for the lowest Landau level.
We show in figure 13 how this quantity varies withρ andν.

A similar evaluation of〈E3〉(ν)3 for the first fewν gives the results listed in table 7.

Table 7. 〈E3〉(ν)3 for the first fewν.

ν 〈E3〉(ν)3

0
4

1+ 3%2
f

1
4

(1+ 3%2)4
(27%6 − 108%5 + 207%4 − 168%3 + 33%2 + 84% − 11)f

2
4

(1+ 3%2)7
(729%12− 5832%11+ 24 786%10− 61 560%9 + 94 527%8 − 72 144%7

−23 076%6 + 114 192%5 − 104 697%4 + 29 976%3 + 11 826%2 − 4632% + 1)f

Here the generalization to arbitraryν is not apparent, except that specializing to% = 1
gives〈E3〉(ν)3 = f . The expressions above are related to the cumulants by

χ(ν)n =
(−1)n

n!
〈En〉(ν)n for n = 1, 2, 3. (43)

(This relation does not generalize to highern.)
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Figure 14. The density of states constructed from〈E〉, 〈E2〉, and 〈E3〉 (dashed lines) for
(a) ν = 0, (b) ν = 1, and (c)ν = 2, with f = % = 2. For comparison we show the density
constructed from the first twelve moments in the lowest Landau level (full line).

7.2. From moments to the density of states

In this case we have calculated too few moments to use the method from sections 5 and 6.
Instead we parametrize the density of states as

D(E) = CEc exp(−aE2)(1+ bE) (44)

whereC is a normalization constant, and the parametersa, b, c are chosen such that〈E〉,
〈E2〉, and 〈E3〉 are reproduced. To get some measure of the accuracy obtained, we also
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use the same procedure for the lowest Landau level. Forf = % = 2 we find the fitting
parameters listed in table 8.

Table 8. The fitting parameters forf = % = 2.

ν a b c

0 0.22 174 0.06 732 1.10 221
1 0.47 681 0.22 997 2.98 668
2 0.64 008 2.50 640 3.77 993

The resulting densities are plotted in figure 14. For comparison we also show the density
found for the lowest Landau level when all twelve moments are used. It seems thatD(E)

can be reproduced fairly well from only three moments.

8. Concluding remarks

We have in this paper generated and analysed a high- (12th-) order perturbation expansion
of the averaged Green function, for a class of models inspired by the integer quantum Hall
effect. The generation process can be fully automated using computer algebra programs. The
order which can be obtained by means of our programs is mostly limited by available CPU
time, as the number of diagrams exhibits factorial growth with the perturbative order. With
present technology about three more orders would be feasible for the quantity considered.

For the models considered, thenth-order perturbation expansion provides exact
information of the firstn moments of the density of states versus energy,D(E). WhenD(E)
is a reasonably smooth function it can be reconstructed to high accuracy (better than 1%)
from the computed moments. The results are also useful for checking and complementing
other approaches, like numerical simulations on finite-size systems.

There are several directions in which to extend our method. The one of most immediate
interest for the integer quantum Hall effect is extending the analysis to the averaged two-
particle Green function. This quantity encodes information about transport properties.
We have done some initial investigations in this direction. It is fairly straightforward to
implement a computer algebra procedure which automatically generates all diagrams, and
evaluates them. The number of diagrams will be about one order of magnitude larger (for
e.g. the 12th perturbative order). The information generated can be viewed as various
moments of a three-variable spectral function. It is not clear how easy it will be to
reconstruct this spectral function, or the interesting physical information it contains, from
the information generated by the perturbation expansion.
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Appendix A. The projection operator projecting onto the νth Landau level

With appropriate units and gauge choice, the imaginary time propagator for a 2D electron
(with charge−e, wheree > 0) in a magnetic field solves the initial-value problem†

∂

∂τ
G(r,ρ; τ) = 1

2

[(
∂

∂x
− i

2
y

)2

+
(
∂

∂y
+ i

2
x

)2
]
G(r,ρ; τ) (A1)

G(r,ρ; 0) = δ(r − ρ). (A2)

By making theansatzthatG is a Gaussian in(x, y, ξ, η), with a prefactor and coefficients
which depend onτ , one obtains the solution

G(r,ρ; τ) =
√
ε

2π
ei(xη−ξy)/2 1

1− εe−εR/(1−ε)e−R/2 (A3)

whereε = e−τ andR = 1
2(r − ρ)2. Since the energy of theνth Landau level isν + 1

2,
ν = 0, 1, . . ., an alternative expression forG is

G(r,ρ; τ) = e−τ/2
∞∑
ν=0

Pν(r,ρ)e−ντ (A4)

wherePν is the projection onto theνth Landau level. Thus, by series expanding equa-
tion (A3) in powers ofε we easily find the (integral kernels of the) projection operators
onto the various Landau levels. The first few examples are

P0(r,ρ) = 1

2π
ei(xη−ξy)/2e−R/2 (A5)

P1(r,ρ) = 1

2π
ei(xη−ξy)/2(1− R)e−R/2 (A6)

P2(r,ρ) = 1

2π
ei(xη−ξy)/2(1− 2R + 1

2R
2)e−R/2. (A7)

The general expression is

Pν(r,ρ) = 1

2π
ei(xη−ξy)/2Lν(R)e−R/2 (A8)

with Lν the νth Laguerre polynomial.

Appendix A.1. Eigenvalues in a rotation-symmetric potential

The projection operators can be expanded in a basis of rotation eigenfunctions. With
x = r cosϕ, y = r sinϕ, ξ = r ′ cosϕ′, η = r ′ sinϕ′,

Pν(r,ρ) =
∞∑

`=−ν
e−i`(ϕ−ϕ′)F (ν)` (r)F

(ν)
` (r ′). (A9)

If we introduce a rotation-symmetric potential,W(r) = W(r), {e−i`ϕF`(r)} continues to be
a basis of energy eigenfunctions. The corresponding eigenvalues are

E
(ν)
` = 2π

∫ ∞
0
r dr F (ν)` (r)2W(r). (A10)

† Herer andρ are 2D vectors with components(x, y) and(ξ, η) respectively. The units for length and time are
chosen such that̀B ≡ (h̄/eB)1/2 andωB ≡ eB/m equals unity. The orientation is chosen such thatB points
along the positivez-axis, and the problem is formulated in the (radial) symmetric gauge,r ·A(r) = 0.
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Table A1. The first twelve cumulants for% = 1.

k (−1)kk!χk

1 f

2 f

3 f

4 f − 0.500 000f 2

5 f − 2.500 000f 2

6 f − 8.166 667f 2 + 1.750 000f 3

7 f − 22.166 67f 2 + 19.250 00f 3

8 f − 54.416 67f 2 + 126.1667f 3 − 13.625 000f 4

9 f − 125.7500f 2 + 644.6111f 3 − 260.625 00f 4

10 f − 279.5500f 2 + 2843.403f 3 − 2844.1667f 4 + 185.687 500f 5

11 f − 605.5500f 2 + 11 399.82f 3 − 23 374.694f 4 + 5449.812 50f 5

12 f − 1288.383f 2 + 42 793.33f 3 − 161 291.55f 4 + 88 986.8125f 5 − 3891.031 25f 6

Table A2. The first twelve cumulants for% = 2.

k (−1)kk!χk

1 f

2 0.500 000f

3 0.307 692f

4 0.200 000f − 0.050 000f 2

5 0.132 231f − 0.180 995f 2

6 0.087 912f − 0.424 981f 2 + 0.046 429f 3

7 0.058 554f − 0.820 875f 2 + 0.387 161f 3

8 0.039 024f − 1.420 263f 2 + 1.889 714f 3 − 0.095 141f 4

9 0.026 014f − 2.293 572f 2 + 7.080 389f 3 − 1.435 478f 4

10 0.017 342f − 3.537 360f 2 + 22.609 12f 3 − 12.021 342f 4 + 0.349 690f 5

11 0.011 561f − 5.283 592f 2 + 64.911 79f 3 − 74.270 396f 4 + 8.293 927f 5

12 0.007707f − 7.711 882f 2 + 172.9145f 3 − 379.118 71f 4 + 106.0533f 5 − 2.011 57f 6

Combining (A9) and (A10) gives a generating function for the eigenvalues,

Z(ν)(e−iϕ) = 2π
∫ ∞

0
r dr Pν(r,ρ)W(r) =

∞∑
`=−ν

E
(ν)
` e−i`ϕ. (A11)

Hereρ is chosen such thatr ′ = r andϕ′ = 0. With W(r) as defined in equation (1), the
integration is simple, and we get a generating function

Z(ν)(e−iϕ) = 2

% + 1
(aeiϕ)ν(1− be−iϕ)ν(1− ae−iϕ)−ν−1 (A12)

wherea = (% − 1)/(% + 1) andb = (% − 3)/(% − 1). It is easy to verify that

Z(ν)(1) =
∞∑

`=−ν
E
(ν)
` = 1.
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Table A3. The first twelve cumulants for% = 3.

k (−1)kk!χk

1 f

2 0.333 333f

3 0.142 857f

4 0.066 667f − 0.011 111f 2

5 0.032 258f − 0.029 762f 2

6 0.015 873f − 0.052 596f 2 + 0.003 872f 3

7 0.007 874f − 0.077 199f 2 + 0.024 758f 3

8 0.003 922f − 0.102 003f 2 + 0.093 423f 3 − 0.002 627f 4

9 0.001 957f − 0.126 065f 2 + 0.271 598f 3 − 0.032 822f 4

10 0.000 978f − 0.148 870f 2 + 0.673 638f 3 − 0.223 264f 4 + 0.002 953f 5

11 0.000 489f − 0.170 176f 2 + 1.501 653f 3 − 1.107 501f 4 + 0.064 580f 5

12 0.000 244f − 0.189 903f 2 + 3.102 167f 3 − 4.502 556f 4 + 0.714094f 5 − 0.004752f 6

Table A4. The first twelve cumulants for% = 4.

k (−1)kk!χk

1 f

2 0.250 000f

3 0.081 633f

4 0.029 412f − 0.003 676f 2

5 0.011 103f − 0.007 701f 2

6 0.004 296f − 0.010 755f 2 + 0.000 597f 3

7 0.001 686f − 0.012 572f 2 + 0.003 044f 3

8 0.000 667f − 0.013 302f 2 + 0.009 236f 3 − 0.000 136f 4

9 0.000 265f − 0.013 214f 2 + 0.021 700f 3 − 0.001 567f 4

10 0.000 105f − 0.012 575f 2 + 0.043 644f 3 − 0.009 292f 4 + 0.000004f 5

11 0.000 042f − 0.011 601f 2 + 0.079 054f 3 − 0.039 239f 4 + 0.000 752f 5

12 0.000 017f − 0.010 458f 2 + 0.132 857f 3 − 0.134 113f 4 + 0.010 015f 5 + 0.000 100f 6

Series expansion gives the eigenvalues

E
(ν)
` = (−1)`+ν

2

% + 1
a`+2ν

ν∑
k=0

(
ν

k

)( −ν − 1

ν + `− k
)(

b

a

)k
. (A13)

We find thatE(ν)` → δ`,0 as% → 1+. More explicit expressions for the first three Landau
levels are

E
(0)
` =

2

% + 1

(
% − 1

% + 1

)`
(A14)

E
(1)
` =

2

(% + 1)3

(
% − 1

% + 1

)` [
4(`+ 1)+ (% − 1)2

]
(A15)
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E
(2)
` =

2

(% + 1)5

(
% − 1

% + 1

)` [
8(`+ 2)(`+ 1)+ 8(`+ 2)(% − 1)2+ (% − 1)4

]
. (A16)

Appendix B. Tables of cumulants

We present here the first twelve cumulants for some selected values of% (see tables A1–A4).
The exact expressions are much too long to present in full (except when% = 1); thus we
give only their numerical approximations. It is apparent from these tables that the higher
cumulants vanish quite rapidly when% is large (andf is of order one).

Note added in proof. After this paper was submitted we were informed about similar work [7] (see also [8]) on
a related model, which uses a different method to reconstruct the density of states from its moments. This nicely
complements our work; it would be interesting to make a detailed comparison of the two reconstruction methods
for the same model.
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